Received: November 19, 1985; accepted July 2, 1986

MASS SPECTRA OF HYDRAZIDES AND ALKYLHYDRAZIDES OF FLUORINATED ALKANECARBOXYLIC ACIDS

V.A.LOPYREV, L.V.KLYBA, E.N.MEDVEDEVA, V.Yu. VITKOVSKII, T.I. YUSHMANOVA and M.G. VORONKOV

Irkutsk Institute of Organic Chemistry, Siberian Division of the USSR Academy of Sciences, 664033, Irkutsk (USSR)

SUMMARY

Main pathways in the electron-impact induced mass spectrometric fragmentation of hydrazides and alkylhydrazides of alkanecarboxylic acids have been studied. The effect of the structure of fluorinated acyl group and hydrocarbon radical on the dissociation mode has been established.

INTRODUCTION

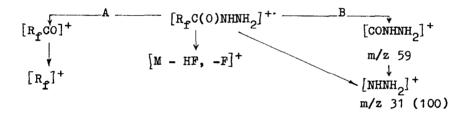
Despite the wide application of hydrazides of fluorinated alkanecarboxylic acids in organic synthesis, no information concerning their behavior under electron impact is available at present.

RESULTS AND DISCUSSION

We have studied the mass spectra of $R_fC(0)NH-NHR_1$ with $R_f = FCH_2$, F_2CH , $F_3C(CF_2)_n$, n = 0-5 as well as those of CH_3 with $R_1 = H$, CH_3 , C_2H_5 , C_3H_7 , $CH(CH_3)_2$, C_6H_5 .

The mass spectra of these compounds with R_1 = H are given in Table 1. As seen from this Table, the intensity of the molecular ion of acetohydrazides is 16%. On increasing the number of fluorine atoms F(m) in the series $F_m H_{3-m} CC(0)NHNH_2$ the molecular ion becomes relatively more intense (23 - 74%). The unusually sharp increase in the molecular ion stability in the presence of

TABLE 1 Mass Spectra of Compounds $R_fC(0)NHNH_2$ (I-VIII)


$R_{ ilde{\mathbf{f}}}$	CH ₃	FCH ₂	F2CH	CF3	c ₂ F ₅	c_3F_7	C4F9	$^{\text{C}}_{6}^{\text{F}_{13}}$
Ion Gompound	н	II	III	IV	V	VI	VII	VIII
-	2	3	4	5	9	7	8	6
N]	74(16)*	92(59)	110(74)	128(100)	178(60)	228(61)	278(41)	378(23)
[M-HF2] +	ı	ŧ	71(5)	31(100)	ı	189(1)	239(2)	339(2)
[C4F9]+m/z 219	1	1	ı	ı	ı	ı	(2)	ŧ
[M-CHOF2]+	ı	ı	ı	•	111(5)	161(9)	211(5)	311(1)
[G3F7]+m/z 169	ı	i	1	ı	ı	t	(8)	(4)
[M-G0-F]	ı	1	ı	81(5)	131(2)	181(8)	231(5)	331(2)
[W-C0]+,	ı	64(1)	82(5)	t	150(3)	200(2)	250(1)	ı
[M-F]+	1	•	91(2)	109(3)	1	209(7)	259(3)	359(3)
[C2F5] + m/z 119	ı	1	•	ı	(22)	(23)	(12)	(6)
[C2F4] + m/z 100	ı	1	ı	1	(6)	(56)	(16)	(5)
[C.F.] + m/z 81	ı	i	t	i	(2)	(6)	(4)	(2)
[Reco]	43(81)	61(19)	(6)62	1	•	ı	ı	ı
[M-HF]+•	ı	ı	90(25)	108(54)	t	ı	ſ	•

(30)	(12)	1	(100)
(06)	(41)	ŧ	(100)
(02)	(14)	ı	(100)
(79) (29)	(20)	i	(100) (100) (100)
(42)	(45)	t	(100)
ı	(54)	ı	(100)
i	(2)	t	(100)
1	ſ	(100)	l
$[CR_3]^+$ m/z 69	$[CONHNH_2]^+$ m/z 59	$[\mathrm{NH}_2\mathrm{NH}_2]^{+}$ m/z.32	$[NHNH_2]^+$ m/z 31

* m/z Values and relative abundances, % (in parentheses).

extra electronegative fluorine atoms may be explained by variation of the site of localization of the positive charge. It may be assumed that in the molecular ion originating from CH₃C(0)NHNH₂ (I) with m = 0 the positive charge is mainly localized on the oxygen atom. In its fluoro substituted compounds with m = (1 - 3) the positive charge is localized at two neighbouring nitrogen atoms. The stability of the molecular ions enhances on increasing the electronegativity of the perfluoroacyl groups (I - IY). The stability of molecular ions of hydrazides of higher perfluorocarboxylic acids (n = 3,5; comp. VII, VIII) decreases which is related to lengthening of the acyl fragment. Similar trend is observed in the mass spectra of higher perfluoroalkanes [1].

The general fragmentation pathway of compounds (I-VIII) is as follows:

In the mass spectrum of acetohydrazide (I)a fragmentation involving cleavage of the C-N bond (route A) is predominant. An increase in the number of fluorines in an acyl radical (compounds II-IV) enhances the portion of products due to the fragmentation at the C-C(0) bond (route B). In the series F_3 C-(CF_2) CONHNH₂, starting with n = 1 (compounds V-VIII) no products resulting from cleavage of the C-N bond are observed in fact. For compounds (I-VIII) the [NHNH₂] ion m/z 31, is the maximum ion (Table 1). This suggests this ion to originate not only from the fragment at m/z 59 (route B), but also from the molecular ion by cleavage of the C-N bond, involving both the formation of the rapidly disintegrating ion $[R_1CO]^+ - [R_1]^+ + CO$ and the route $[R_2CONHNH_2]^{++} - [R_1CO]^+ + [NHNH_2]^{++}$.

In the spectra of compounds (II-VIII), along with the above fragmentation routes, elimination of molecular HF and radical F from both the molecular ion and the fragment, does take place. No ions produced by cleavage of N-N bonds have been observed.

It is known that carboxylic alkylhydrazides can exist in two isomeric forms [2,3]:

$$RC = \begin{pmatrix} 0 \\ NR_1 NH_2 \end{pmatrix}$$
 (1) $RC = \begin{pmatrix} 0 \\ NHNHR_1 \end{pmatrix}$ (11)

We have previously shown that acylation of methylhydrazine with trifluoroacetic derivatives leads to only isomer (II). Difluoroacetic derivatives give a mixture of the two isomers. The previous synthesis of 1-methyl-1-trifluoroacetylhydrazine [4] is erroneous[5]. The effect of structural isomerism on the fragmentation pathway has been investigated using 1-methyl-1-difluoroacetyl- (IX) and 1-methyl-2-difluoroacetylhydrazine (XI) and compound (X) (Table 2).

The fragmentation of IX, XI involves cleavage of C-C(0) bonds (route B) to produce ions $[{\rm C_2H_50N_2}]^+ \alpha t \, m/z$ 73 and ions $[{\rm CH_5N_2}]^+$ at m/z 45 which show the highest intensity. In contrast to mass spectra of fluorinated hydrazines (IX, XI) the mass spectrum of 1-acetyl-1-methylhydrazine shows the most intense peak at m/z 46 which appears to arise from hydrogen migration to a hydrazine fragment

$$\begin{bmatrix} H_2 C - C & 0 \\ H & N - NH_2 \end{bmatrix}^{+ \bullet} - CH_2 CO \qquad \qquad \begin{bmatrix} NH(CH_3)NH_2 \end{bmatrix}^{+ \bullet}$$

$$CH_3 \qquad \qquad m/2 \quad 46$$

The mass spectrum of compound (XII) contains a peak at m/z 96 whereas no similar peak is observed for (IX). This peak may originate from the rearrangement of the molecular ion with transfer of two hydrogen atoms by a six-center mechanism:

A similar rearrangement has been observed in the mass spectrum of 1,2-dibenzoyl-1,2-dimethylhydrazine [6]. Further fragmentation of the m/z 96 ion involves loss of the H₂O or HF molecules:

$$[c_2H_3 \text{ ONF}]^{+}$$
 $\xrightarrow{\text{HF}}$ $[chf_2cnH_2]^{+}$ $\xrightarrow{\text{H}_2O}$ $[chf_2cnH]^{+}$

TABLE 2

Mass Spectra of Compounds $R_f^G(0)NR_1NH_2$ and $R_f^G(0)NHNHR_1(IX-XVI)$ $R_1 = GH_3$, m/z, (%)

$^{R}_{f}$	CHF2	снэ	CHF2	CF3	C2 F5	C3F7	C4F9	C6F13
Ion Compound	IX	×	XI	XII	XIII	XIV	ΧV	XVI
-	2	3	4	5	9	7	8	6
[M]+•	124(54)	88(44)	124(26)	142(9)	192(35)	242(6)	292(6)	392(4)
[M-F]+	1	ŧ	105(4)	123(1)	173(1)	223(1)	273(1)	373(2)
[R_COHNH2]+•	1	r	96(41)	114(51)	114(51) 164(64)	214(43)	264(20) 364(11)	364(11)
[R_HCN]+	. 1	ı	78(4)	96(4)	146(5)	196(2)	246(2)	346(2)
[R_HCN-HF]+	ı	1	58(6)	1	126(2)	176(2)	226(1)	326(1)
[R_HCN-CF2	ı	ı	1	i	96(1)	146(2)	ı	ı
$[c_3 r_7]^+ m/z 169$	1	ı	ı	ı	1	(4)	ı	(2)
$[c_2^F]^+$ m/z 119	ı	ı	ı	ı	(81)	(56)	(3)	(4)
$[c_2F_4]^+$ m/z 100	1	i	ı	ı	(34)	(20)	(3)	(3)
$[c_2F_3]^+$ m/z 81	1	t	1	ı	(7)	(2)	1	(3)
[C2H5N20]m/z 73	(4)	(4)	(4)	(7)	(7)	3	(1)	(3)
[Rp] +	51(62)	i	51(39)	69(29)	119(81)	169(29)	219(1)	,

m/z 71	i	ı	1	(9)	(4)		I	(5)
[CF3] m/z 69	ı	t	1	(28)	(26)	(44)	(11)	(33)
m/z 66	ı	ı	ı	ı	(3)	(4)	1	i
m/z 46	ı	(100)	ı	ı	1	1	ı	1
m/z 44	(21)	(98)	(28)	(19)	(37)	(10)	(8)	(12)
$[CH_5N_2]^{+}$ m/z 45	(100)	(16)	(100)	(100)	(100)	(100)	(100)	(100)
п/2 43	(38)	(66)	(27)	(6)	(23)	(22)	(11)	(10)

TABLE 3

Metastable Peaks and the Corresponding Transitions in the Mass Spectra of Hydrazides and Alkylhydrazides of Fluorinated Alkanecarboxylic Acids (50 eV)

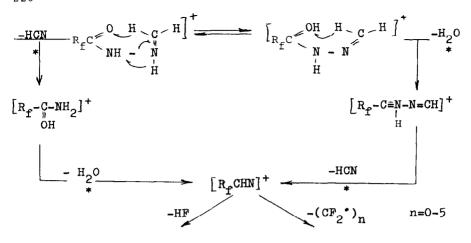
No	Compound	m*	Transition
1	2	3	4
XII	CF3C(O)NHNHCH3	92.0	142 114 + CH ₂ N
XIII	c ₂ F ₅ c(o)nhnhch ₃	140.1 122.1 18.7	192 164 + CH ₂ N 177 147 + 30 45 29 + 16
		17.4 12.4	45 28 + 17 59 27 + 32
XIV	c ₃ F ₇ c(o)nhnhch ₃	189.3 175.9 128.8 128.4	242 214 + CH ₂ N 214 194 + HF 214 166 + 48 166 146 + HF
XVII	cf ₃ c(o)nhnhc ₂ h ₅	107.3 83.3 77.5	141 123 + H ₂ 0 156 114 + 42 114 94 + HF
XVIII	c ₂ F ₅ c(0)nhnhc ₂ h ₅	130.6 156.7 16.3	206 164 + 42 191173 + H ₂ 0 59 31 + 28
XIX	с ₃ ғ ₇ с(о)ининс ₂ н ₅	189•3 179•5	242 214 + CH ₂ N 214 196 + H ₂ O
XXI	cf ₃ c(o)nhnhc ₃ h ₇	76.5 107.3	170 114 + 56 141 123 + H ₂ 0

(continued)

TABLE 3 (cont.)

1	2	3	4
XXII	с ₂ F ₅ c(о)ининс ₃ н ₇	122.3 156.7 56.2 56.2	220 164 + 56 191 173 + H ₂ 0 178 100 + 78 164 96 + 68
XXIII	c ₃ F ₇ c(o)nhnhc ₃ h ₇	206.3 56.1	241 223 + H ₂ 0 204 107 + 97
XXXII	cf3c(o)nhnhc ⁶ H ⁵	33•7 59•6	77 51 + 26 142 92 + 50
XXXIII	с ₂ ғ ₅ с(о)ининс ₆ н ₅	45•1 33•7 59•6	254 107 + 147 77 51 + 26 142 92 + 50

This is indicated by the presence of peaks of the corresponding ions in the mass spectra (Table 2). The above fragmentation pathway is confirmed by metastable transition peaks (Table 3).


The mass spectra of 1-ethyl-2-perfluoroacylhydrazines contain the same ions as those mentioned above and in addition $[M-CH_3]^+$ ions (compounds XVII-XX) (Table 4).

$$\left[\mathbf{R}_{\mathbf{f}} \mathbf{C} \right]^{\bullet} \xrightarrow{\text{CH}_{3}^{\bullet}} \xrightarrow{-\mathbf{CH}_{3}^{\bullet}} \left[\mathbf{R}_{\mathbf{f}} \mathbf{C} \right]^{\bullet} \xrightarrow{\text{NHNH=CH}_{2}}$$

1-Propyl-2-perfluoroacylhydrazines (XXI-XXV) dissociate to give similar ions of the same structure, but their peaks in the spectra are most abundant (Table 4). Further fragmentation follows the scheme on p. 220.

218 Mass Spectra of Compounds R_fC(0)NHNHR, with R₁ = C₂H₅ (XVII-XX), C₃H₇ (XXI-XXV), C₉H₁₉ (XXVI,XXVII)

		,	•	1			-		`	`	
R	c_{F_3}	C2F5	C3F7 C4F9	24 F9	CF ₃	C2F5	c ₃ F7	G4 F9	C6F13	GF3	C2F5
lon Gompound	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV	V. XX	XXVI	XXVII
-	2	3	4	5	9	7	8	6	10	11	12
[M]+•	156	206 (25)	256 (15)	306 (3)	170 (20)	220 (19)	270 (14)	320 (7)	420 (11)	254 (3)	304 (2)
[Rfconhingh2]+	141 (10)	191 (50)	241 (36)	291 (8)	141 (100)	191 (100)	241 (100)	291 (100)	391 (100)	141 (68)	191 (38)
[R_CH3N20]+•	ı	178 (2)	ı	ı	128 (3)	178 (6)	ı	1	ì	128 (9)	178 (53)
$[R_f c(=0H)NH_2]^+$	114 (21)	164 (97)	214 (73)	364 (33)	114 (23)	164 (48)	214 (53)	264 (52)	364 (62)	114	164
[R_conninglH20]+	123.	173	223	ı	123	173 (23)	223 (5)	273 (13)	373 (2)	123. (5)	173
[C4F9] + m/z 219	ī	ı	1	(3)	1	1	ı	(6)	(9)	i	ı
[c3F7] + m/z 169	ţ	ı	(19)	(2)	ı	ı	(27)	(9)	(11)	ı	ı
[rec(oh)nh2-hF] ⁺	(1)	144 (6)	194 (7)	244	94 (4)	144 (8)	194 (10)	244 (4)	1 1	2 4 (1)	1 1

For compounds (XVIII, XXI, XXII) as well as for 1-nony1-2-trifluoroacety1--(XXVI) and 1-nony1-2-pentafluoropionylhydrazine (XXVII) the ions

$$\begin{bmatrix} R_{f}-C \\ NH_{2} \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} R_{f}-C \\ NHNH_{2} \end{bmatrix}^{+}$$

are shown by metastable peaks to originate directly from the molecular ion (Table 3).

An increase in the perfluoroacyl group length does not affect much the fragmentation of compounds with $R_1 = CH_3(XII-XVI)$, C_2H_5 (XVII-XX) and $C_3H_7(XXI-XXV)$ and their mass spectra are dependent only on the alkyl substituent size. Similarly lengthening of the alkyl substituent R_1 to C_9H_{19} (compounds XXVI, XXVII) does not change the fragmentation route. In the mass spectra of these compounds the main contribution to the ion current is from ions resulting from cleavage of hydrocarbon chains.

Branching of a hydrocarbon radical induces some changes in the fragmentation of fluorocarboxylic alkylhydrazides. In the case of 1-isopropyl-2-perfluoroacylhydrazines (XXVIII-XXXI) the molecular ion fragmentation involves elimination of a propylene molecule to form a cation-radical with m/z of the unsubstituted hydrazide of the corresponding acid (Table 5).

TABLE 5

Mass Spectra of Compounds R_fC(0)NHNHCH(CH₃)₂ (XXVIII-XXXI)

Rf	CF ₃	C ₂ F ₅	C ₃ F ₇	C4 ^F 9
	Compound			
Ion	XXVIII	XXIX	XXX	XXXI
M+•	170(9)	220(7)	270(3)	320(3)
LM-CH ₃ 1+	155(100)	205(100)	255(35)	305(3)
$[(M-CH_3)- H_2O]^+$	137(3)	187(1)	237(1)	287(1)
[Rfconhnh2]+•	128(22)	178(26)	228(8)	278(5)
$[M-C_3^H6^N]^+$	114(9)	164(18)	214(11)	264(12)
$[C_4F_9]^+ \text{ m/z } 219$	-	-	-	(4)
[C ₃ F ₇] + m/z 169	***	-	(5)	(8)
[C ₂ F ₅] + m/z 119	_	(16)	(3)	(3)
[C ₂ F ₄] + m/z 100	-	-	(4)	(4)
[C ₃ H ₉ N ₂]m/z 73	(9)	(17)	(18)	(21)
[CF ₃] ⁺ m/z 69	(73)	(12)	(18)	(25)
[CONHNH ₂] + m/z 59	(84)	(3)	(5)	(8)
$[C_3H_7N]^+$ m/z 57	(16)	(32)	(56)	(55)
$[C_3H_6N]^+$ m/z 56	(15)	(12)	(13)	(20)
m/z 43	(73)	(79)	(100)	(100)
m/z 42	(98)	(84)	(32)	(72)

$$\begin{bmatrix} R_{\mathbf{f}} - C & & & & & \\ NHNH & H & & & & & \\ H_{\mathbf{C}}^{\dagger} - CH_{2} & & & & & \\ CH_{3} & & & & & \\ CH_{3} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\$$

A similar transfer of hydrogen was also observed with 1-methyl--1-acetylhydrazine.

An alternative fragmentation route for the molecular ion of hydrazides with R₁= CH(CH₃) (XXVIII-XXXI) leads to [M-CH₃]⁺ and [(M-CH₃)-H₂0]⁺ ions. These same ions were also produced from 2-isopropylhydrazides of benzoic and isonicotinic acids [7]. In the mass spectra of (XXVIII) and (XXIX) peak ion [M-CH₃]⁺ is the base peak and its intensity decreases with further increase in the perfluoroacyl group length.

As in (XII-XXVII), the dissociation of molecular ions of compounds with $R_1 = CH(CH_3)_2$ (XXVIII-XXXI) is characterized by rearranged ions at m/z 114,164, 214 and 264, corresponding to breakage of the N-N bond. However, peaks ions $[R_fCHN]^+$ at m/z 96, 146,196 and 246 are absent in mass spectra(XXVIII-XXXI). This points to a difference in the $[M-CH_2N]^+$ structure compounds (XII-XXVII) and (XXVIII-XXXI).

For 1-phenyl-2-perfluoroacylhydrazines (XXXII-XXXVI) (Table 6) the molecular ion peak is the most intense one. Its intensity is higher than that for 1-acetyl-2-phenylhydrazine[8]. Increasing in size of the perfluoroacyl radical (compounds XXXV, XXXVI) decreases the [M] $^+$ stability as in the case of compounds with $R_1=H$. The possibility of delocalization of the positive charge between two nitrogens and the phenyl group decreases the stability of the $[C_6H_7N_2]^+$ fragment at m/z 107. In the mass spectra of (XXXII-XXXVI) the greatest contribution to the ion current is from the m/z 107 ions and the products of their further dissociation. The appearance of peaks at m/z 142 and 134 is somewhat unexpected. The high resolution measurements show the following structures:

$$[c_7^{H_6}NF_2]^+$$
 $[c_7^{H_6}ON_2]^+$
m/z 142 m/z 134

TABLE 6

Mass Spectra of Compounds R_fC(0)NHNHC₆H₅ (XXXII-XXXVI)

$^{ m R}$ f	CF ₃	^C 2 ^F 5	c ₃ F	7 C ₄ F ₉	^C 6 ^F 13
	Compound				
Ion	XXXII	IIIXXX	VIXXX	x vxxx	IVXX
[M] +•	204(83)	254(72)	304(67)	354(17)	454(29)
[M- 62] ⁺	142(11)	192(3)	242(5)	292(1)	392(1)
[C7H6ON2] + m/z 134	(4)	(5)	(9)	(5)	(2)
[C ₃ F ₇] ⁺ m/z 169	~	_	(12)	~	(3)
[C ₇ H ₆ NF ₂]m/z 142	(4)	(3)	(8)	(7)	(6)
[RgCONHNH2]+	128(2)	-	-	278(2)	-
$[c_2^2F_5]^+ m/z$ 119	-	(15)	(2)	(1)	(3)
$[C_2F_4]^+$ m/z 100	-	(3)	(2)	-	(1)
$[C_6H_8N_2]^+$ m/z 108	(12)	(22)	(24)	(8)	(8)
[C ₆ H ₇ N ₂] ⁺ m/z 107	(100)	(100)	(100)	(100)	(100)
[Rgt	69(24)	119(15)	169(12)	219(1)	-
m/z 105	(11)	(11)	(16)	(6)	(7)
$\left[c_{6}^{H}_{7}^{N}\right]^{+}$ m/z 93	(13)	(12)	(8)	(5)	(3)
[C ₆ H ₆ N] ⁺ m/z 92	(21)	(28)	(52)	(17)	(19)
[C ₆ H ₅ N] ⁺ m/z 91	(27)	(22)	(38)	(10)	(6)
[C ₆ H ₆] + m/z 78	(21)	(20)	(32)	(6)	(4)
[CF ₃] ⁺ m/z 69	(24)	(18)	(19)	(12)	(8)
[C ₆ H ₅] ⁺ m/z 77	(57)	(50)	(62)	(46)	(44)
[C ₅ H ₅] ⁺ m/z 65	(29)	(26)	(51)	(16)	(9)
[c ₄ H ₃] + m/z 51	(29)	(13)	(41)	(19)	(8)

TABLE 7
High Resolution EI Mass Spectra of Some Ions of Hydrazides and Alkylhydrazides of Fluorinated Alkanecarboxylic Acids

Compour	d Peak observed	Formula	Deviation*	Assignment
1	2	3	$\frac{10^{-5}}{4}$	5
III	82.03429	CH ₄ N ₂ F ₂	+ 3.0	M - CO
Λ	150.021657	$^{\mathrm{C}}2^{\mathrm{H}}3^{\mathrm{N}}2^{\mathrm{F}}5$	+ 1.4	M - CO
XI	96. 026114	C2H4ONF2	+ 1.5	CHF ₂ C(OH)NH ₂
XII	114.016977	C2H3ONF3	+ 2.5	CF3C(OH)NH2
XII	96.006135	^C 2 ^{HNF} 3	+ 2.1	CF ₃ HCN
XIII	146.002939	C3HNF5	+ 1.5	C ₂ F ₅ HCN
XIV	195 • 99973	C4HNF7	- 0.4	C ₃ F ₇ HCN
VIX	214.010307	C4H3ONF7	+ 1.3	C3F7C(OH)NH2
IVX	364.000703	C7H3ONF13	+ 1.9	C ₆ F ₁₃ C(OH)NH ₂
IIVX	141.027583	C ₃ H ₄ ON ₂ F ₃	+ 0.5	CF3CONHNHCH2
IIVX	114.016985	C2H3ONF3	+ 2.5	CF3C(OH)NH2
XVIII	173.013832	C4H2N2F5	+ 0.9	C2F5CONHNHCH2-H2C
IIIVX	191.024411	$^{\mathrm{C_4^{H_4^{ON}}2^{F_5}}}$	+ 2.8	C2F5CONHNHCH2
XIX	214.010311	C4H4ONF7	+ 1.7	C3F7C(OH)NH2
XX	291.017890	C6H4ON2F9	+ 1.7	C4F9CONHNHCH2
XXI	128.019774	C2H3ON2F3	+ 2.1	CF3CH3ON2
IXX	141.027598	^C 3 ^H 4 ^{ON} 2 ^F 3	+ 2.0	CF3CONHNHCH2
IIXX	164.013474	C3H3ONF5	- 1.0	C2F5C(OH)NH2
IIXX	178.016580	$^{\mathrm{C_{3}^{H}_{3}^{ON}_{2}F_{5}}}$	+ 1.7	$^{\mathrm{C}}_{2}\mathrm{F}_{5}^{\mathrm{CH}}_{3}^{\mathrm{ON}}_{2}$
XXII	191.024399	$^{\mathrm{C_4^{H_4^{ON}2^{F_5}}}}$	+ 1.6	C2F5CONHNHCH2
IIIXX	214.010304	$^{\mathrm{C_4H_4ONF_7}}$	+ 1.0	C3F7C(OH)NH2
XXIII	223.010650	C5H2N2F7	+ 1.7	C ₃ F ₇ CONHNHCH ₂ -H ₂ C
VIXX	273.013832	C6H2N2F9	+ 0.9	C ₄ F ₉ CONHNHCH ₂ -H ₂ (
XXIV	291.017890	C6H4ON2F9	+ 1.7	C ₄ F ₉ CONHNHCH ₂
IVXX	114.016977	C2H3ONF3	+ 1.7	CF ₃ C(OH)NH ₂

(continued)

TABLE 7 (cont.)

1	2	3	4	5
IVXX	123.017037	$^{\mathrm{C_3^{H_2^{N_2^{F_3}}}}}$	+ 2.4	CF3CONHNHCH2-H2O
IVXX	141.027595	C ₃ H ₄ ON ₂ F ₃	+ 1.7	CF3CONHNHCH2
IIVXX	164.013497	C ₃ H ₃ ONF ₅	+ 1.3	C ₂ F ₅ C(OH)NH ₂
IIVXX	191.024398	C ₄ H ₄ ON ₂ F ₅	+ 1.5	C2F5CONHNHCH2
XXIX	178.016577	$^{\mathrm{C_{3}H_{3}ON_{2}F_{5}}}$	+ 1.4	^C 3 ^H 3 ^{ON} 2 ^F 5
XXX	214.010303	C4H4ONF7	+ 0.9	$M - C_3H_6N$
IXXX	278.010193	C5H3ON2F9	+ 1.0	C5H3ON2F9
IIXXX	134.048018	°7 ^H 6 ^{ON} 2	+ 0.5	C7H6ON2
XXXII	142.046849	$^{\mathrm{C}}7^{\mathrm{H}}6^{\mathrm{NF}}2$	+ 1.5	M - 62
XXXIII	134.048023	C7 ^H 6 ^{ON} 2	+ 1.0	$^{\mathrm{C}}7^{\mathrm{H}}6^{\mathrm{en}}2$
IIIXXX	142.046844	C7H6NF2	+ 1.0	^C 7 ^H 6 ^{NF} 2
xxxv	134.048025	^C 7 ^H 6 ^{ON} 2	+ 1.2	^C 7 ^H 6 ^{ON} 2

The deviation represents the difference between observed and calculated values.

These ions possibly arise from a skeletal rearrangement the mechanism of which needs further investigation.

$$(CF_2)_n C(O) NHNHC_6 H_5^{+\bullet} - \frac{-F}{-CHON} (CF_2)_{n+1} NHC_6 H_5^{+\bullet}$$

$$-(CF_2)_n^{\bullet}$$

$$[C_6 H_6 N]^{+\bullet} - [C_7 H_6 NF_2]^{+\bullet}$$

$$m/z 92 m/z 142$$

The occurence of the ion at m/z 92 is a feature of the mass spectra of (XXXII-XXXVI). This indicates a weakness of N-N bonds in compounds with $R_1=C_6H_5$ as compared with their analogs with $R_1=Alk$.

EXPERIMENTAL

The synthesis of compounds (IV-XVII, XIX, XXVI) was described in [2,5, 10-15]. Compounds (XVIII,XX, XXII-XXIV, XXVII) were obtained as follows. To a solution of 0.02 moles of methyl ester of perfluoroalkanecarboxylic acid in 30 ml of dry methanol, a solution of the corresponding alkylhydrazine in 10 ml of dry methanol was added upon stirring. The reaction mixture was allowed to stand at room temperature for 4 hours. After removal of the solvent at reduced pressure the reaction products were purified by sublimation in vacuum.

- 1-Ethyl-2-pentafluoropropionylhydrazine (XVIII). Yield 81%, m.p. 57-58°. Found, %: C 29.16, H 3.48, F 45.95, N 13.77, C₅H₇F₅N₂O. Calculated, %: C 29.14, H 3.42, F 46.09, N 13.59.
- 1-Ethyl-2-nonafluoropentanoylhydrazine (XX). Yield 77%, m.p. 68-69°. Found, %: C 27.58, H 2.37, F 55,65, N 9.14, C₇H₇ F₉N₂O. Calculated, %; C 27.46, H 2.3, F 55.85, N 9.15.
- 1-Propyl-2-heptafluorobutyrylhydrazine (XXIII). Yield 55%, m.p. 79-80°. Found, %: C 30.94, H 3.36, F 49.27, N 10.34. C₇H₉F₇N₂O. Calculated, %; C 31.12, H 3.36, F 49.23, N 10.37.
- 1-Propyl-2-pentafluoropropionylhydrazine (XXII). Yield 69%, m.p. 84°. Found, %: C 32.54, H 4.32, F 43.15, H 12.66. C₆H₉F₅N₂O. Calculated, %: C 32.74, H 4.12, F 43.15, N 12.66.
- 1-Propyl-2-nonafluoropentanoylhydrazine (XXIV). Yield 72%, m.p. 73-74°. Found, %: C 29.92, H 2.80, F 53.33, N 8.74. C₂H₉F₉N₂O. Calculated, %; C 30.18, H 2.83, F 53.28, N 8.75.
- 1-Nonyl-2-pentafluoropropionylhydrazine (XXVII). Yield 67%, m.p. 71° (from hexane). Found, %: C 47.15, H 7.12, F 30.92, N 9.32. C₁₂H₂₁F₅N₂O Calculated, %: C 47.36, H 6.96, F 31.22, N 9.21.

The mass spectra were recorded on Varian MAT 212 (70 eV) and MX-1303 (50 eV) mass spectrometers. Source temperature 200° C. The substances were introduced directly into the ion source. The temperature varied within a 25-300° range depending on the sample volatility. High resolution spectra were taken at 10⁴ resolution for the assignment of some ions.

REFERENCES

- 1 F.L. Monleer, E.G. Bloom, J.H. Lengel, C.E. Wise, J.Am. Chem. Soc., 71 (1949), 337.
- 2 F.E. Condon, J. Org. Chem., 233 (1972) 3608.
- 3 K.N. Zelenin, I.P. Bezhan, A.E. Drabkin, E.N. Krotova, Zh. Organ. Khim., 13, 8 (1977) 1565.
- 4. C.T. Pedersen, Acta chem. Scand., 18 (1964) 2199.
- 5 E.N.Medvedeva, P.V. Makerov, I.D. Kalikhman, T.I. Yushmanova, V.A.Lopyrev, Izv.Akad. nauk SSSR, ser.khim., 5 (1979)1163.
- 6 O.N. Porter, A.E. Seif, Austral. J. Chem., 25 (1972) 523.
- 7 R.M. DeSagher, A.R. DeLeenher, A.E. Claeys, A.A. Cruyl, Biomed. Mass Spectrom., 2 (1975) 82.
- 8 P. Wolkoff, S. Hammerum, Org. Mass Spectrom., 11 (1976) 375.
- 9 P. Wolkoff, Org. Mass Spectrom., 11 (1976) 394.
- 10 H. Brown, M. Cheng, L. Parcell, D. Pilipovich, J.Org. Chem., 26 (1961) 4407.
- 11 Z.I. Mazalova, V.A. Lopyrev, Zh. Organ, Khim., 7 (1971) 1408.
- 12 I.D.Kalikhman, P.W. Makerov, E.N. Medvedeva, T.I. Yushmanova, V.A.Lopyrev, Izv. Akad. nauk SSSR, ser.khim., 8, (1979) 1897.
- 13 I.D.Kalikhman, E.N.Medvedeva, D.F. Kushnarev, T.I.Yushmanova, V.A.Lopyrev, Izv. Akad. nauk SSSR, ser.khim., 12 (1980) 2735.
- 14 M.G. Voronkov, G.I. Sarapulova, N.N. Chipanina, E.N. Medvedeva, T.I. Yushmanova, V.A. Lopyrev, Yu.L. Frolov, Izv. Akad. nauk SSSR, ser.khim., 12 (1980) 2739.